Directivity for one-dimensional scalar raciation
نویسندگان
چکیده
منابع مشابه
Solving One Dimensional Scalar Conservation Laws by Particle Management
We present a meshfree numerical solver for scalar conservation laws in one space dimension. Points representing the solution are moved according to their characteristic velocities. Particle interaction is resolved by purely local particle management. Since no global remeshing is required, shocks stay sharp and propagate at the correct speed, while rarefaction waves are created where appropriate...
متن کاملMassive Scalar Field in an One-Dimensional Oscillating Region
The classical scalar massive field satisfying the Klein-Gordon equation in a finite one-dimensional space interval of periodically varying length with Dirichlet boundary conditions is studied. For the sufficiently small mass, the energy can exponentially grow with time under the same conditions as for the massless case. The proofs are based on estimates of exactly given mass-induced corrections...
متن کاملAn ACO algorithm for one-dimensional cutting stock problem
The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-heuristic method based on ACO is presented to solve this problem. In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select the...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملCell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics
We present cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and also for the one-dimensional Lagrangian hydrodynamics up to third-order. We also demonstrate that a proper choice of the numerical fluxes allows to enforce stability properties of our discretizations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1967
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/99888